David J. Meyer Vice President and Chief Counsel of Regulatory and Governmental Affairs Avista Corporation 1411 E. Mission Avenue P. O. Box 3727 Spokane, Washington 99220 Phone: (509) 495-4316, Fax: (509) 495-8851 RECEIVED 2007 NOV - 1 AM 9: 31 UTILITIES COMMISSION

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IN THE MATTER OF THE APPLICATION)OF AVISTA CORPORATION, dba AVISTA)UTILITIES, FOR AN ORDER)AUTHORIZING A CHANGE IN)DEPRECIATION RATES)

CASE NO. AVU-E-07- $\frac{11}{000}$ CASE NO. AVU-G-07- $\frac{1000}{000}$

DIRECT TESTIMONY OF DAVE B. DEFELICE

1	I. INTRODUCTION
2	Q. Please state your name, employer and business address.
3	A. My name is Dave DeFelice. I am employed by Avista Corporation as a Senior
4	Business Analyst. My business address is 1411 East Mission, Spokane, Washington.
5	Q. Please briefly describe your education background and professional
6	experience.
7	A. I graduated from Eastern Washington University in June of 1983 with a
8	Bachelor of Arts Degree in Business Administration majoring in Accounting. I have served in
9	various positions within the Company, including Analyst positions in the Finance Department
10	(Rates section and Plant Accounting) and in Marketing/Operations Departments, as well.
11	While employed in the Plant Accounting section of the Finance Department in 1988-1990, I
12	was involved in a depreciation study of the Company's Electric Plant facilities. I rejoined the
13	Rates section in December of 1997 as a Rate Analyst. Then in 1999, I joined a group in the
14	Company as a Sr. Business Analyst that focuses on economic analysis of various project
15	proposals as well as evaluations and recommendations pertaining to business policies and
16	practices.
17	Q. As a Senior Business Analyst, what are your responsibilities?
18	A. As a Senior Business Analyst I am involved in activities ranging from financial
19	analysis of numerous projects with various departments such as Engineering, Operations
20	Marketing/Sales and Finance. Also, a portion of my job tasks involve advisory and informa
21	training of employees (primarily new hires in Engineering) pertaining to regulatory finance

22 and ratemaking concepts.

23

, . 1

Q.

О.

What is the scope of your testimony?

My testimony and exhibits in this proceeding will cover the Company's 2 A. proposed changes in depreciation rates pertaining to Electric Plant in Service for Generation, 3 Transmission, Distribution and General Plant accounts. Similar information is provided for 4 Gas Plant in Service for Underground Storage, Distribution and General Plant in service. 5 6 **O**. Are you sponsoring any exhibits? Yes. I am sponsoring Exhibit No. 101 (Depreciation Expense – Electric), No. 7 Α. 102 (Depreciation Expense - Gas), No. 103 (Depreciation Parameters) and No. 104 (Electric 8 Accounts with WUTC Proposed Rates), which were prepared under my direction. 9

10

II. SUMMARY OF CHANGES IN DEPRECIATION RATES

11

Why did Avista have a depreciation study performed?

A. Avista hired Gannett Fleming, Inc. to undertake a depreciation study of its depreciable electric, gas and common plant in service as of December 31, 2004. The objective of this assignment was to recommend depreciation rates to be utilized by Avista for accounting and ratemaking purposes. Workpapers, including the detailed Depreciation Study prepared by Gannett Fleming, Inc., are included with this filing.

17

Q. What is the main purpose of a depreciation study?

A. The primary outcome of a depreciation study is to calibrate annual depreciation expense accruals and depreciation rates by utility plant families. Continued review and periodic revisions are normally required to maintain continued use of appropriate annual depreciation accrual rates with the goal of balancing the remaining plant investment on the Company's balance sheet with the remaining life of the assets. An assumption that accrual rates can remain unchanged over a long period of time implies a disregard for the inherent

variability in service lives and salvage and for the change of the composition of property in 1 service. The annual accrual rates proposed in this filing were calculated in accordance with 2 the straight-line remaining life method of depreciation using the average service life 3 procedures based on estimates which reflect considerations of historical evidence and 4 5 expected future conditions.

- 6
- **O**. What are the definitions of key terms used in the depreciation study report containing the basis for your depreciation rate recommendations for Avista? 7
- 8

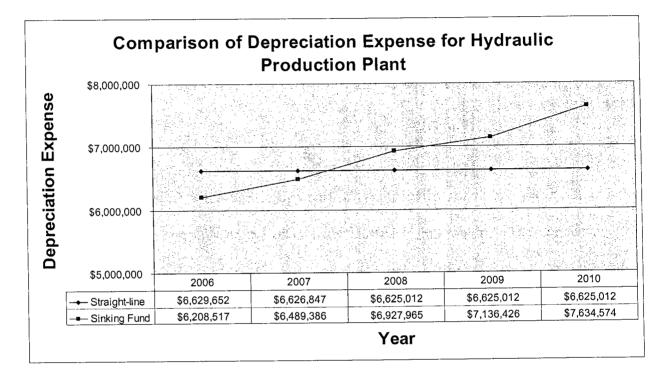
The definitions are as follows: Α.

Depreciation - As applied to depreciable utility plant, means the loss in service 9 value incurred through the consumption or prospective retirement of utility plant in the course 10 of service from causes which are known to be from current operation. Among the causes to 11 be given consideration are wear and tear, decay, action of the elements, inadequacy, 12 obsolescence, changes in demand and requirements of public authorities. 13

Service Value - The difference between original cost and net salvage of utility 14 15 plant.

Net <u>Salvage</u> – The salvage value of property retired less the cost of removal. 16

Salvage Value - The amount received for property that has been retired, less 17 any cost incurred in connection with the sale or in preparing the property for sale; or, if 18 retained, the amount at which the material recoverable is chargeable to materials and supplies 19 20 (inventory), or other appropriate account.


Cost of Removal - The cost of demolishing, dismantling, tearing down or 21 otherwise removing utility plant, including the cost of transportation and handling incidental 22 23 thereto.

- <u>Service Life</u> The time between the date utility plant is includible in utility
 plant in service and the date of its retirement.
- Q. When was the last time the Company changed its depreciation rates in
 Idaho?
- A. The last time the Company changed its Idaho depreciation rates was September
 9, 2004.
- Q. Is the Company proposing different depreciation methodologies in this
 case than what were used in 2004?

The change in depreciation rates is due to updated information 9 A. Yes. determined through analysis of historical retirement experience, salvage and cost of removal 10 experience, and determination of updated unit remaining lives and net salvage factors. The 11 Company proposes to utilize the straight-line methodology for hydro electric facilities, 12 consistent to the methodology used on all other categories of plant in service within the scope 13 of this depreciation study. The sinking-fund methodology has been used on hydro generation 14 facilities up to this point in time. 15

Q. Why is the Company proposing to use the straight-line depreciation methodology on hydraulic electric generation facilities rather than the sinking-fund method?

A. The straight-line method of depreciation will result in lower increases in depreciation expense accruals and depreciation levels consistent with capital activity in future years for hydro electric generation facilities as compared to the sinking-fund methodology. (See Comparison of Depreciation Expense for Hydraulic Production Plant for projected expenses between 2006 through 2010 in graph below.) Also, the sinking-fund methodology is no longer recognized as a reasonable approach of depreciation for utility assets. It is not consistent with other utilities or the other asset classes in this report. The conversion to straight-line depreciation will result in a minor impact to ratepayers now (reduction in depreciation expense of approximately \$300,000 in 2008), but will also mitigate depreciation accrual changes for future studies in comparison to the sinking-fund methodology.

- 6
- 7

Q. What is the impact of the proposed changes in depreciation rates?

A. The proposed depreciation rates reflect a decrease of approximately \$192,000 in electric depreciation expense on a system-wide basis and an increase in depreciation expense of approximately \$128,000 for Idaho. This amount is calculated on Exhibit No.101 (Depreciation Expense – Electric). The proposed depreciation rates for natural gas plant results in a decrease of approximately \$466,000 in natural gas depreciation expense on a system-wide basis and a decrease in Idaho depreciation expense of approximately \$132,000. This amount is calculated on of Exhibit No.102 (Depreciation Expense – Gas).

- 1 Q. Are the changes in depreciation expense discussed above the result of the 2 depreciation rates proposed by Gannett Fleming, Inc.?
- A. The changes for natural gas depreciation expense are the result from using the rates proposed by Gannett Fleming, Inc. The changes for electric depreciation expense are the result from using the rates proposed by Gannett Fleming, Inc. for all but four plant accounts.
- r
- 6 Q. Which four electric plant accounts have depreciation rates that were not 7 proposed by the depreciation consultants and why?

On April 26, 2007, Avista filed with the Washington Utilities and 8 Α. Transportation Commission (WUTC) a request for electric and natural gas rate increases in 9 Docket Nos. UE-070804 and UG-070805. The proposed depreciation rates from the 10 Depreciation Study were incorporated into those filings. A Partial Settlement Stipulation 11 between Avista, Commission Staff, and the other interveners was filed on October 15, 2007, 12 in which the parties agreed to accept the depreciation rates proposed in the Depreciation 13 Study, including a WUTC Staff proposed reduction in the negative net salvage values the 14 Company used in determining new depreciation rates on four electric accounts, which results 15 in lower depreciation accrual rates on those accounts. These accounts include Account 311 -16 17 Structures & Improvements, Account 312 – Boiler Plant Equipment, Account 356 – Overhead Conductor & Devices, and Account 369 - Services. These WUTC Staff proposed negative 18 net salvage values were deemed reasonable by the Company. Exhibit No. 104 (Electric 19 Accounts with WUTC Staff Proposed Rates) provides detail on the original salvage values 20 and depreciation rates proposed in the Study, the WUTC Staff proposal, and the impact of the 21 changes on system and Idaho depreciation expense. 22

23

1

О.

Why are new depreciation rates being proposed in this filing?

Accounting theory requires matching of expenses with either consumption or 2 Α. 3 revenues to ensure that financial statements reflect results of operations as accurately as possible. The matching principle of financial accounting is often referred to as the "cause and 4 effect" principle. Because utility revenues are determined through regulation, changes in asset 5 consumption are not automatically reflected in revenues until regulated revenues are adjusted 6 to reflect the changes in asset consumption. Consumption of utility assets must be measured 7 directly by conducting a book depreciation study to accurately determine mortality 8 Matching is an element of regulatory philosophy that addresses 9 characteristics. intergenerational equity. Intergenerational equity means costs are borne by the generation of 10 customers that caused them to be incurred, not by a later generation. This matching concept is 11 one principle that can be used to ensure that charges to customers reflect the actual costs of 12 providing service. Also, proper matching of costs and revenues related to group (mass) asset 13 consumption will provide for not only sufficient recovery of existing assets in service, but also 14 provide for a mechanism to fund replacements of retired assets on a timely basis, thus 15 reducing rate impacts by way of limiting "catch-up" adjustments in future depreciation 16 17 studies.

18

Q. Please summarize the analysis methods used in the depreciation study?

19

A. The study consisted of the following processes:

Step One was a Life Analysis consisting of statistical historical retirement experience and an evaluation of the applicability of that experience to surviving property. For Production Plant, this step also entailed the establishment of the generating unit probable retirement dates suitable for rate calculation.

> DeFelice, Di Avista Corporation Page 7

Step Two was a Net Salvage Analysis consisting of a study of salvage value and cost
 of removal experience and an evaluation of the applicability of that experience to surviving
 property.

Step Three consisted of the determination of the generating unit remaining lives, the average service lives, the interim retirement dispersion identified by pending construction additions and interim retirement ratios for Production Plant and retirement dispersion by Iowa-type curves for Transmission, Distribution and General Plant, and the net salvage factors applicable to surviving property for all categories of plant.

9 Step Four was the determination of the depreciation accrual rates applicable to each 10 plant group, recognizing the results of Steps One through Three, and a comparison with the 11 existing rates.

Q. Can you elaborate on the two different methods used for plant retirement dispersions?

A. For Electric Transmission, Distribution and General Plant, and Gas Plant in Service Account, historical retirements were used as a basis for the actuarial method of Life Analysis. This statistical analysis can be performed since the vintage of retired and surviving property is known. Generally, retirement data for the years 1989-2004 were used in the actuarial life computations. From this, original survivor curves were visually and statistically fitted to Iowa-type survivor curves (defined below).

The actuarial method of Life Analysis for Production Plant will provide only an indication of interim average service life and retirement dispersion without consideration of terminal retirement experience. Thus, a two step analysis was utilized. Step One was the estimation of the retirement date for each generating unit and Step Two was the calculation of past interim addition and retirement ratios. Interim additions and retirements were determined from the Company's actual recorded history by plant and account for the entire history of each plant. These amounts then determined interim retirement ratios (interim retirements as a percentage of past depreciable balances) that is the depreciation rate that would have recovered an amount equal to the total interim retirements.

- 6
- 7

Q. What would be the impact if interim retirement ratios were not used in Production Plant depreciation analysis?

A. Due to the nature of the mortality characteristics of generating plants, using only historical retirements in the same way that is done for other plant categories would result in artificially low depreciation rates for generating plants during the early years of asset life. This is due to the fact that plant retirements for generating plants typically are not as prevalent in the early years of plant life, as compared to the later years in the remaining life of a facility. Thus, cost recovery through depreciation rates would be disproportional (higher) in the later years of the plant life, which violates the attempt to achieve intergenerational equity.

15

Q. What are Iowa Curves?

A. Iowa Curves represent frequency dispersion of retirements identified by a simple nomenclature. The nomenclature is a combination of a letter and a number, the letter refers to the shape of the retirement dispersion, whereas, the number represents the concentration of retirements near the average service life.

For example, an "L" curve has the majority of retirements occurring prior to the average service life or to the left of the mean. An "R" curve has the majority of retirements occurring after the average service life or to the right of the mean. An "S" curve is symmetrical to the mean or average service life.

> DeFelice, Di Avista Corporation Page 9

1 **O**. Could you discuss the analysis supporting the salvage and cost of removal 2 ratios that are proposed by the Company?

3 Α. Yes. The analysis was based upon actual salvage and cost of removal 4 experience from 1983 through 2004. Salvage and cost of removal factors were developed for 5 each property group by dividing salvage and cost of removal amounts by the original cost of 6 the retired property. Since the average dollar age of retirements of plant is young relative to 7 the expected age of surviving property at retirement, this results in overstating salvage factors 8 and understating the cost of removal factors applicable to surviving property, if history serves 9 as the sole basis for net salvage determination. From this, salvage factors would be overstated 10 because young property retirements are more likely to have a salvage value than older reused 11 items. In addition, cost of removal factors are understated because the amount of inflation 12 reflected in the cost to remove young property is much less than the amount that will be 13 reflected in the cost to remove the surviving property when it is retired. The average age of 14 original installations at retirement is equal to the average service life, meaning that the average 15 age of surviving property at retirement will be higher than the average service life and much 16 higher than the age of current retirements. Reaction to this situation resulted in an inflation 17 adjustment to historical cost of removal ratios.

18

О. What were the changes in electric depreciation rates that were 19 recommended as a result of the study and modifications proposed by WUTC Staff?

- 20 Α. The table on the following page shows the existing rates and the recommended 21 rates:
- 22
- 23
- 24

DeFelice, Di Avista Corporation Page 10

1			Depr	eciation Rates
2			Existing %	Recommended %
3	Funct	tional Electric Group		[_]
4		Production Plant	3.06	2.73
5	Hydra	ulic Production Plant	1.89	2.02
6	Other	Production Plant	3.90	3.23
7		mission Plant	2.45	2.06
8		bution Plant	2.17	2.79
9	Gener	cal Plant	8.44	5.34
10 11	Q.	What does that repres	ent in terms of a percent	age increase in depreciation
12	expense?			
13	А.	By utilizing the modifie	ed rates recommended in t	he study and applying them to
14	system electr	ric plant monthly average	e balances for the twelve	months ended December 31,
15	2006, deprec	iation expense decreased	by approximately 0.3%.	
16	Q.	Would you summa	rize the findings and	recommendations of the
17	depreciation	n study using the functio	nal groups listed above?	
18	А.	Yes. The composite r	rate for electric property u	under the study changed from
19	2.644% to 2	2.640%. As a group, av	erage service life changes	were mostly increases. Net
20	salvage char	nges were mostly more n	egative due to decreased	salvage and increased cost of
21	removal. Th	ne relationship of increase	ed average service life and	1 more negative net salvage is
22	expected due	e to the fact that cost of	removal is sensitive to p	rice level changes that reflect
23	labor costs, v	while the salvage value of	an asset will inherently de	ecrease as its age increases.
24	Stear	n Production plant depred	ciation expense decreased	due to increased service lives.
25	Hydraulic Pr	roduction plant expense i	increased due primarily to	the switch from sinking-fund
26	method of d	lepreciation to straight-li	ne method. Other Produ	ction plant expense decreased
27	due to increa	ased service lives. Transr	nission plant expense deci	eased due to increased service
28	lives. Distri	ibution plant expense s	ignificantly increased du	e mainly to three accounts,
				DeFelice, Di

•

۰ .

> Avista Corporation Page 11

1	including Po	oles, Overhead Co	onductor and Ur	nderground Condu	ctor. For Poles	and Overhead
2	Conductor, t	he salvage value	s changed from	net positive to no	et negative. Fo	or Underground
3	Conductor, t	he service lives	were shortened.	General plant ex	pense decreased	d primarily due
4	to Communi	ication Equipmer	nt lives being in	creased from 12 t	o 15 years to b	etter reflect the
5	type of asset	being installed.				
6	Q.	What were th	ie changes in g	as depreciation r	ates that were	recommended
7	as a result o	of the study?				
8	А.	Following is a	table that show	s the existing rates	and the recomm	nended rates:
9				Depre	eciation Rates	
10	_			Existing %	Recor	mmended %
11		ctional Gas Grou		0.21		1.86
12 13		erground Storage ribution Plant	Plant	2.31 2.43		2.34
13 14		eral Plant		5.85		4.84
15	UQII			5.05		
16	Q.	What does	that represen	it in terms of	a percentag	e decrease in
17	depreciatio	n expense?				
18	А.	By utilizing t	he new rates ro	ecommended in th	ne study and a	pplying them to
19	system gas	plant monthly av	erage balances t	for the twelve mor	ths ended Dec	ember 31, 1996,
20	depreciation	n expense decreas	sed by approxim	ately 4.9%.		
21	Q.	Would you	summarize t	he findings an	d recommend	lations of the
22	depreciatio	on study using th	e functional gr	oups listed above	?	
23	А.	Yes. The cor	nposite rate for	gas property under	the study chan	iged from 2.50%
24	to 2.37%.	As a group, life o	changes were me	ostly increases. N	et salvage chan	iges were mostly
25	decreases of	lue to decreased	salvage and i	ncreased cost of	removal. The	relationship of
26	increased as	sset life and net s	alvage decreases	s is expected due t	o the fact that c	ost of removal is

.

. .

- sensitive to price level changes that reflect labor costs, while the salvage value of an asset will
 inherently decrease as its age increases.
- Please summarize the effect the change in depreciation rates would have 3 О. 4 on the Idaho electric depreciation expense? The change in depreciation rates would increase Idaho annual electric 5 Α. depreciation expense by approximately \$128,000. 6 Please summarize the effect the change in depreciation rates would have 0. 7 on the Idaho natural gas depreciation expense? 8 The change in depreciation rates would decrease Idaho annual natural gas 9 A. depreciation expense by approximately \$132,000. 10 Is the Company requesting a change in its current customer rates as a 11 **Q**. result of this filing? 12 No. The Company asks that the Commission approve the proposed depreciation 13 Α. rates for accounting purposes only and will include the impact from the change in depreciation 14 rates in a future general rate proceeding. 15 Does this conclude your pre-filed direct testimony? 16 **Q**. Yes, it does. 17 A.

DeFelice, Di Avista Corporation Page 13

RECEIVED

David J. Meyer Vice President and Chief Counsel of Regulatory and Governmental Affairs Avista Corporation 1411 E. Mission Avenue P. O. Box 3727 Spokane, Washington 99220 Phone: (509) 495-4316, Fax: (509) 495-8851

2007 NOV - 1 AM 9: 36 IDAHO PUBLIC UTILITIES COMMISSION

. .

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IN THE MATTER OF THE APPLICATION)	CASE NO. AVU-E-07- <u>11</u>
OF AVISTA CORPORATION, dba AVISTA)	CASE NO. AVU-G-07- <u>0</u> 3
UTILITIES, FOR AN ORDER)	
AUTHORIZING A CHANGE IN)	EXHIBIT NO. 101
DEPRECIATION RATES)	DAVE B. DEFELICE

AVISTA UTILITIES Depreciation Expense - Electric For the Year Ended December 31, 2006

	2006 Deprec. at Existing Rate	2006 Deprec. at Proposed Rate	Change	WA Allocation	ID Allocation
Production Plant:		•	¥		
Steam Production Plant	11,388,515	10,174,951	(1,213,564)	(798,889)	(414,675)
Hydraulic Production Plant	6,208,522	6,629,652	421,130	277,230	143,900
Other Production Plant	10,625,177	8,796,613	(1,828,564)	(1,203,743)	(624,820)
Total Production Plant	28,222,214	25,601,216	(2,620,998)	(1,725,402)	(895,595)
P/T Ratio				65.830%	34.170%
Transmission Plant	9,049,748	7,614,061	(1,435,687)	(945,113)	(490,574)
P/T Ratio				65.830%	34.170%
Distribution Diset	47 457 405	00 404 050	5 007 545	0.400.400	4 007 007
Distribution Plant	17,457,435	22,484,950	5,027,515	3,120,428	1,907,087
Depreciable Plant-ADP-12A				62.067%	37.933%
General Plant-See Allocation WS	6,693,473	5,530,438	(1,163,035)	(770,045)	(392,990)
Depreciable Plant-ADP-12A	0,030,470	0,000,400	(1,105,055)	66.210%	33.790%
Depresiable Flam-ADI -12A				00.21076	55.19078
TOTAL ELECTRIC PLANT	61,422,870	61,230,665	(192,205)	(320,132)	127,928
			(,	()	1000
DEFERRED TAX IMPACT @ 35%				(112,046)	44,775
•			-		

ID Accumulated Depreciation/Deferred Tax Impact:

.

	Accumulated Depeciation Balance	Deferred FIT Balance
Dec-05	0	0
Jan-06	10,661	3,731
Feb-06	21,321	7,462
Mar-06	31,982	11,194
Apr-06	42,643	14,925
May-06	53,303	18,656
Jun-06	63,964	22,387
Jul-06	74,625	26,119
Aug-06	85,285	29,850
Sep-06	95,946	33,581
Oct-06	106,607	37,312
Nov-06	117,267	41,043
Dec-06	127,928	44,775
Average of Monthly Average	63,964	22,387

Exhibit No. 101 Case Nos. AVU-E-07-___ AVU-G-07-___ DeFelice, Avista Corporation Page 1 of 1 David J. Meyer Vice President and Chief Counsel of Regulatory and Governmental Affairs Avista Corporation 1411 E. Mission Avenue P. O. Box 3727 Spokane, Washington 99220 Phone: (509) 495-4316, Fax: (509) 495-8851 RECEIVED

2007 NOY -1 AM 9: 36 IDAHO PUBLIC UTILITIES COMMISSION

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IN THE MATTER OF THE APPLICATION)	CASE NO. AVU-E-07- <u>11</u>
OF AVISTA CORPORATION, dba AVISTA)	CASE NO. AVU-G-07- <u>0</u> 3
UTILITIES, FOR AN ORDER)	
AUTHORIZING A CHANGE IN)	EXHIBIT NO. 102
DEPRECIATION RATES)	DAVE B. DEFELICE

AVISTA UTILITIES Depreciation Expense - Gas For the Year Ended December 31, 2006

	2006 Deprec. at Existing Rate	2006 Deprec. at Proposed Rate	Change	WA Allocation	ID Allocation
Underground Storage Plant System Contract Demand Ratio	425,988	344,112	(81,876)	(60,056) 73.350%	(21,820) 26.650%
Distribution Plant Actual Therms Purchased	7,862,876	7,561,878	(300,998)	(214,542) 71.277%	(86,456) 28.723%
General Plant - Direct System Contract Demand Ratio	177,423	152,821	(24,602)	(18,046) 73.350%	(6,557) 26.650%
Transportation Plant - Direct System Contract Demand Ratio	99,447	85,072	(14,375)	(10,544) 73.350%	(3,831) 26.650%
General Plant-See Allocation WS Depreciable Plant-ADP-12A	968,561	924,547	(44,014)	(30,394) 69.055%	(13,620) 30.945%
TOTAL GAS PLANT	9,534,295	9,068,430	(465,865)	(333,582)	(132,284)
DEFERRED TAX IMPACT @ 35%			_	(116,754)	(46,299)

ID Accumulated Depreciation/Deferred Tax Impact:

۰.

.

.

	Accumulated	Deferred FIT Balance
Dec-05	0	0
Jan-06	(11,024)	(3,858)
Feb-06	(22,047)	(7,716)
Mar-06	(33,071)	(11,575)
Apr-06	(44,095)	(15,433)
May-06	(55,118)	(19,291)
Jun-06	(66,142)	(23,150)
Jul-06	(77,166)	(27,008)
Aug-06	(88,189)	(30,866)
Sep-06	(99,213)	(34,725)
Oct-06	(110,237)	(38,583)
Nov-06	(121,260)	(42,441)
Dec-06	(132,284)	(46,299)
Average of Monthly Average	(66,142)	(23,150)

RECEIVED

David J. Meyer Vice President and Chief Counsel of Regulatory and Governmental Affairs Avista Corporation 1411 E. Mission Avenue P. O. Box 3727 Spokane, Washington 99220 Phone: (509) 495-4316, Fax: (509) 495-8851

2007 NOV -1 AM 9: 36

IDAHO PUBLIC UTILITIES COMMISSION

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IN THE MATTER OF THE APPLICATION)CASE NO. AVU-E-07-OF AVISTA CORPORATION, dba AVISTA)CASE NO. AVU-G-07-UTILITIES, FOR AN ORDER)CASE NO. AVU-G-07-AUTHORIZING A CHANGE IN)EXHIBIT NO. 103DEPRECIATION RATES)DAVE B. DEFELICE

AVISTA UTILITIES Depreciation Parameters For the Year Ended December 31, 2006

		Curr	ent Para	ameters	Propo	sed Paran	neters
		Average			Average		
Account		Service		Net	Service		Net
Number	Description	Life	Curve	e Salvage	Life	Curve	Salvage
Steam Production	Plant						
	ires & Improvements	35	Note		65	S1.5	-5
312.0 Boiler I	Plant Equipment	35		-10	60	R1	-10
	enerator Units	35		-10	50	01	-10
315.0 Access	sory Electric Equipment	35		0	55	S1.5	-5
316.0 Misc. F	Power Plant Equipment	35		0	50	R2	0
Hydraulic Producti	ion Plant	(N/A - Si	inking Fu	und Method)			
330.3 Remov	ving Property of Others		-		100	R4	0
	ving Property of Others-Conservation						
330.4 Land E	asements				75	R3	0
330.41 Land E	Easements-Conservation				75	R3	0
331.0 Structu	ires & Improvements				110	R0.5	-5
	ures & Improvements-Fish & Wildlife				50	R2.5	0
	ures & Improvements-Recreation				50	R1	0
	ures & Improvements-Rec Info				50	R1	Ō
	voirs, Dams & Waterways				100	R1.5	Ō
	voirs, Dams & Waterways-Fish & Wildlife				60	S1	Ō
	voirs, Dams & Waterways-Fish & Wildlife				60	S1	Ō
	voirs, Dams & Waterways-Recreation				60	S1	Õ
	wheels, Turbines & Generators				60	R1.5	-5
	sory Electric Equipment				45	R2.5	õ
	Power Plant Equipment				65	R1	Ö
	Power Plant Equipment-Fish & Wildlife				40	R3	Ö
	Power Plant Equipment-Recreation				40	R3	õ
	, Railroads & Bridges				60	S2.5	õ
Other Production	Plant						
	ures & Improvements	29.33	Note	1 0	SQ		0
	lolders, Producers & Access.	29.98	NOLC	0	55	R3	Ő
343.0 Prime		29.78	1	0	50	S2.5	0
344.0 Gener		29.93		0	45	R3	0
	sory Electric Equipment	29.93 16.6		0	40 40	S1.5	0
	llaneous Equipment	29.35		0	SQ	01.0	0
Electric Transmis	sion Plant		·				
	ures & Improvements	50	R4	-5	60	R4	-5
353.0 Statio	•	50 50	R4 R4	-	47	R3	-5 -15
354.0 Tower	• •	75	R4 R4		70	S3	-15
355.0 Poles		75 45	R4 R3	-	60	83 R3	-20
	onductor & Devices	45 55	R2		60 60	R3	-30 -10
357.0 UG C		55 60	R4		60 60	R3 R4	-10
	onduit onductor & Devices				60 55		0
		60 75	R4		55 65	S3 R4	0
359.0 Roads	o a mails	75	R5	U	co	K4	U

AVISTA UTILITIES Depreciation Parameters For the Year Ended December 31, 2006

. .

.

	Curr	ent Param	eters	Propo	osed Paran	neters
	Average			Average		
Account	Service		Net	Service		Net
Number Description	Life	Curve	Salvage	Life	Curve	Salvage
Electric Distribution Plant						
361.0 Structures & Improvements	50	R3	-10	55	R3	-10
362.0 Station Equipment	40	R1.5	0	42	R1.5	-10
364.0 Poles, Towers & Fixtures	45	R1	5	50	R2.5	-25
365.0 OH Conductor & Devices	50	R2	20	50	R2.5	-15
366.0 UG Conduit	60	R4	-10	45	R3	-10
367.0 UG Conductor & Devices	40	L1	-17	28	L4	-15
368.0 Line Transformers	40	R2	-10	44	R2	-5
369.0 Services	48	R3	-10	60	R3	-15
370.0 Meters	35	R3	-10	38	S1	0
373.0 Street Lighting & Signal System	25	R2	-10	32	R2.5	-15
373.4 High Pressure Sodium Vapor Lights	20	R2	-10	32	R2.5	-5
Electric General Plant	50	105	F	E E	S2	-5
390.1 Structures & Improvements	50	L0.5	-5	55		
391.1 Computer Equipment	6	S1.0	0	5	SQ	0
392.0 Transportation Equipment			-	11	S3	10
393.0 Stores Equipment	40	R3	2	25	SQ	0
394.0 Tools, Shop & Garage Equipment	20	L3	10	20	SQ	0
395.0 Laboratory Equipment	28	L1	0	15	SQ	0
396.0 Power Operated Equipment				15	L2	10
397.0 Communication Equipment	12	L2	0	15	SQ	0
398.0 Miscellaneous Equipment	25	R2	0	10	SQ	0
Gas Underground Storage						
				50	R3	0
350.2 Rights of Way	50	DE	-5	55	S2.5	-5
351.0 Structures & Improvements	50	R5			82.5 R3	
352.0 Storage Wells	45	R5	-10	50		
352.1 Wells			-	45	R3	0
352.2 Reservoirs	45	R3	0	45	R3	0
352.3 Cushion Natural Gas	45	SQ	0	50	R4	0
353.0 Lines	50	R3	-5	55	S2.5	-25
354.0 Compressor Station Equipment	40	R3	-10	45	S4	-10
355.0 Measuring & Regulating Equipment	40	R3	-10	35	R3	-10
356.0 Purification Equipment	35	R3	0	30	S3	0
357.0 Other Equipment	35	R3	0	40	S2.5	0
Gas Distribution Plant						
375.0 Structures & Improvements	45	R3	0	50	R2.5	-5
			-30	65	R3	-25
376.0 Mains	55	R2				
378.0 Measuring/Regulating Station Equipment	45	L1.5	0	36	R1.5	-5
379.0 Measuring/Regulating City Gate Equipment	45	R3	-10	36	R2	-5
380.0 Services	50	R3	-35	45	R4	-25
381.0 Meters	45	R3	0	40	S2.5	-10
385.0 Measuring/Regulating Industrial Equipment	40	R3	-10	45	R3	-5
Gas General Plant						
390.1 Structures & Improvements	50	R2	-5	35	S0.5	-5
393.0 Stores Equipment				25	SQ	0
394.0 Tools, Shop & Garage Equipment	20	SQ	10	20	SQ	Ō
395.0 Laboratory Equipment	28	R2.5	0	15	SQ	Ő
397.0 Communication Equipment	12	S2	0	15	SQ	Ö
398.0 Miscellaneous Equipment	25	SQ	0	20	SQ	0
530.0 miscenarieous Equipment	20	202	U	20	00	Ū

Note 1 - Previous Depreciation Study Reports prepared by consultants do not have data included.

RECEIVED

David J. Meyer Vice President and Chief Counsel of Regulatory and Governmental Affairs Avista Corporation 1411 E. Mission Avenue P. O. Box 3727 Spokane, Washington 99220 Phone: (509) 495-4316, Fax: (509) 495-8851

.

2007 NOV - 1 AM 9: 36 IDAHO PUBLIC UTILITIES COMMISSION

BEFORE THE IDAHO PUBLIC UTILITIES COMMISSION

IN THE MATTER OF THE APPLICATIONCASE NO. AVU-E-07-OF AVISTA CORPORATION, dba AVISTACASE NO. AVU-G-07-UTILITIES, FOR AN ORDERAUTHORIZING A CHANGE INAUTHORIZING A CHANGE INEXHIBIT NO. 104DEPRECIATION RATESDAVE B. DEFELICE

AVISTA UTILITIES Depreciation Study Electric Accounts with WUTC Proposed Rates For the Year Ended December 31, 2006

•

•

7.

ID Allocation - 311,312,356	0.3417
ID Allocation - 369	0.37933

			Original Study Proposed			WUTC Staff Proposed			Difference	
									System	ldaho
Account			Net	Depreciation	Depreciation	Net	Depreciation	Depreciation	Depreciation	Depreciation
Number	Facility	Description	Salvage	Rate	Expense	Salvage	Rate	Expense	Expense	Expense
311.0	Kettle Falls	Structures & Improvements	-15	2.90%	607,549	-5	2.34%	490,229	(117,320)	(40,088)
311.0	Coltrip Unit 3	Structures & Improvements	-15	2.81%	1,417,623	-5	2,28%	1,150,242	(267,381)	(91,364)
311.0	Coltrip Unit 4	Structures & Improvements	-15	2.83%	1,402,788	-5	2.35%	1,164,859	(237,929)	(81,300)
312.0	Kettle Falls	Boiler Plant Equipment	-20	3.88%	1,554,240	-10	3.31%	1,325,911	(228,329)	(78,020)
312.0	Coltrip Unit 3	Boiler Plant Equipment	-20	3.24%	2,414,744	-10	2.70%	2,012,287	(402,457)	(137,520)
312.0	Coltrip Unit 4	Boiler Plant Equipment	-20	3.32%	1,549,449	-10	2.83%	1,320,766	(228,683)	(78,141)
356.0	N/A	OH Conductor & Devices	-25	2.39%	1,738,155	-10	1.93%	1,403,615	(334,540)	(114,312)
369.1	N/A	OH Services	-25	1.94%	803,414	-15	1.69%	699,881	(103,533)	(39,273)
369.2	N/A	UG Services - Spokane	-25	1.83%	22,507	-15	1.59%	19,556	(2,951)	(1,119)
369.3	N/A	UG Services - Other	-25	1.81%	979,541	-15	1.59%	860,480	(119,061)	(45,163)

\$ (2,042,184) \$ (706,302)

Exhibit No. 104 Case Nos. AVU-E-07-___ AVU-G-07-___ DeFelice, Avista Corporation Page 1 of 1